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SUMMARY. A number of species richness estimators have been developed under the model that individuals (or sampling units)
are sampled with replacement. However, if sampling is done without replacement so that no sampled unit can be repeatedly
observed, then the traditional estimators for sampling with replacement tend to overestimate richness for relatively high-
sampling fractions (ratio of sample size to the total number of sampling units) and do not converge to the true species
richness when the sampling fraction approaches one. Based on abundance data or replicated incidence data, we propose a
nonparametric lower bound for species richness in a single community and also a lower bound for the number of species shared
by multiple communities. Our proposed lower bounds are derived under very general sampling models. They are universally
valid for all types of species abundance distributions and species detection probabilities. For abundance data, individuals’
detectabilities are allowed to be heterogeneous among species. For replicated incidence data, the selected sampling units (e.g.,
quadrats) need not be fully censused and species can be spatially aggregated. All bounds converge correctly to the true
parameters when the sampling fraction approaches one. Real data sets are used for illustration. We also test the proposed
bounds by using subsamples generated from large real surveys or censuses, and their performance is compared with that of

some previous estimators.

KEY WORDS:
richness.

1. Introduction

One of the most fundamental and also most popular measures
of diversity is the number of species present in a community.
The estimation of species richness and its applications have
been extensively discussed in the literature; see, for exam-
ple, Bunge and Fitzpatrick (1993), Colwell and Coddington
(1994), Magurran (2004), Chao (2005), Royle and Dorazio
(2008), and Gotelli and Colwell (2011) for reviews and addi-
tional references.

Both theoretical and practical works show that if there are
many almost undetectable species in a hyper-diverse commu-
nity, then it becomes very difficult to obtain an accurate point
estimate of species richness. Given this difficulty, the deter-
mination of a lower bound for species richness and shared
species richness may be of more practical use, especially if the
accuracy of this lower bound is much better than the point
estimate of species richness.

Two different formulas for such a lower bound for a
single community were derived by Chao (1984,1987,1989)
for abundance-based data and for replicated incidence (i.e.,
presence—absence) data, respectively. These lower bounds
were “nonparametric,” which means that we do not assume
any particular parametric distribution for the underlying dis-
tributions for species abundance or species detection proba-
bilities. These two lower bounds are referred to as the Chaol
estimator (for abundance data) and Chao2 estimator (for
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replicated incidence data) in the ecological literature (e.g.,
Colwell and Coddington, 1994). Although these two estima-
tors were originally derived as lower bounds, they have been
used as species richness point estimators, applied within vari-
ous disciplines and featured in several software programs. For
example, microbiologists used them to count the “uncount-
able” micro-organisms (Bohannan and Hughes, 2003).
Compared with species richness in a single community, the
estimation of species richness shared by multiple communi-
ties has received relatively little attention. When there are
multiple communities, the number of shared species among
communities can be used to describe community overlap and
forms a basis to construct various types of similarity or dis-
similarity indices (Colwell and Coddington, 1994; Magurran,
2004). Pan, Chao, and Foissner (2009) developed a unified ap-
proach to obtain lower bounds for the shared species richness.
All the proposed lower bounds mentioned above were de-
rived under the assumption of sampling with replacement, in
which individuals (or any sampling unit) can be repeatedly
observed. In this paper, we consider another type of sampling
scheme, sampling without replacement. This sampling scheme
is widely used in trap/net surveys when multiple individuals
such as, insects, are killed when sampled, so that no sam-
pled individual can be repeatedly observed. It has been also
applied to other sampling protocols, e.g., forestry surveys, in
which trees are censused by plots or quadrats that are selected
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without repetition. In this type of sampling scheme, any in-
dividual (or any sampling unit such as plot or quadrat) can
be surveyed at most once.

Only a few species richness estimators for sampling without
replacement have been described in the literature, and each
has been derived from different models. Here, we only review
those approaches that take into account the sampling fraction
(i.e., the ratio of sample size divided by the total number of
sampling units in the community) in estimation. Goodman
(1949) was the first to propose an unbiased estimator under
a restrictive condition, and Shlosser (1981) also proposed an
estimator. However, the variance of Goodman’s (1949) esti-
mator is very large and Shlosser’s (1981) estimator has a large
root mean square error (Haas and Stokes, 1998). In our simu-
lations, in some cases Shlosser’s estimator has low bias but in
other cases it has quite a large bias. Quadrat sampling proto-
cols in which quadrats are selected without replacement and
surveyed represent a special application of sampling without
replacement. Under quadrat sampling, Mingoti and Meeden
(1992) and Shen and He (2008) assume a parametric beta
distribution for species detection probability in each quadrat.
Iterative computation is required to obtain the resulting esti-
mates. There are two nonparametric estimators based on the
generalized jackknife techniques: the first- and second-order
jackknife estimators derived by Haas and Stokes (1998) for
abundance data, and those derived by Haas, Liu, and Stokes
(2006) for replicated incidence data. Our numerical compar-
isons will be focused on these two nonparametric jackknife
estimators.

So far, no universal lower bounds have been proposed for
species richness and shared species richness for sampling with-
out replacement. We here develop such estimators for the first
time. Specifically, for abundance-based or replicated incidence
data, we develop a nonparametric lower bound for species
richness in a single community as well as a lower bound for the
number of species shared by multiple communities. The pro-
posed bounds are derived under very general sampling models
and are universally valid for all types of species abundance
distributions. Variance estimators for these lower bounds are
also developed.

Under sampling with replacement, we only model species’
relative abundances, which are independent of the popula-
tion size of the community. In contrast, for sampling without
replacement, we need to model the species’ absolute abun-
dances. For statistical reasons, modeling for the latter sam-
pling scheme is unavoidably more complicated. Therefore,
some researchers have been using the statistical models for
sampling with replacement even when their sampling proto-
cols were actually based on sampling without replacement.
When the sampling fraction is small and the total sampling
units is very large, there is little difference in the inferences
for the two types of sampling schemes (Section 2). But when
the sampling fraction is relatively high, the traditional es-
timators for sampling with replacement tend to overestimate
richness when sampling is actually done without replacement;
see Shen and He (2008) and Section 4 for numerical evi-
dence. When the sampling fraction approaches one, imply-
ing all sampling units have been observed, we should expect
that any estimator closely approaches the observed species
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richness (i.e., the true parameter). However, in this extreme
case, all the traditional estimators for sampling with replace-
ment do not estimate the true species richness reliably when
the samples are taken without replacement, as will be shown
in Section 5. The sampling fraction plays an important role
in our proposed lower bounds. When the sampling fraction
approaches one, our bounds correctly yield the true species
richness whereas when the sampling fraction approaches zero,
our bounds are identical to those based on sampling with
replacement.

Section 2 introduces the proposed lower bound for species
richness for abundance-based data (Section 2.1) as well as
for replicated incidence data (Section 2.2). Section 3 develops
the lower bound for the number of species shared by multiple
communities for abundance-based data (Section 3.1) as well
as for replicated incidence data (Section 3.2). Section 4 uses
real data sets for illustration of the proposed lower bounds.
Section 5.1 examines the performance of the proposed bounds
by using data sets simulated from large real surveys or cen-
suses. The performance of our lower bounds is compared with
that of two jackknife estimators. Simulation results are also
used to examine the effects of some model assumptions on
the proposed bounds in Section 5.2. Section 6 provides some
concluding remarks and discussion.

2. Species Richness
2.1 Sampling by Indwiduals (Abundance Data)

Assume that there are S species indexed from 1 to S, with S
unknown. Let N; (true species abundance or absolute abun-
dance) be the “unknown” number of individuals of the ith
species in the community, : = 1, 2,..., 5, N; > 0. The total
population size is then N = Z‘?:l N;. We assume the total
size N is “known” so that the sampling fraction is known.
Haas and Stokes (1998) described some applications in which
N is known (see Section 6). (Generally, N denotes the total
number of sampling units. When we discuss quadrat sampling
in Section 2.2, N becomes the number of quadrats, which is
known by design.) See Section 4 for an example and Section 6
for discussion of this assumption.

Assume that a sample of n individuals is taken from the
community, with individuals being drawn without replace-
ment. Let X, (sample species frequency) be the number of
individuals of the ith species which are observed in the sam-
ple, i =1, 2,...,5 Only those species with X; > 0 are ob-
servable in the sample. Let f; (sample frequency counts),
k=0, 1,...,n, be the number of species represented by
exactly k individuals in the sample. Here, f; denotes the
number of undetected species in the sample. Thus, we have
n= 27:1 X = Zk'zl kfi.. The sample fraction is defined as
¢ = n/N, the ratio of sample size to the population size. Let
D denote the number of distinct species observed in the sam-
ple, ie, D=3 fi.

Generally, the species detection probability or rate is a
combination of species abundance and individual detectabil-
ity, which is determined by many possible factors (such as
individual movement patterns, color, size, and vocalizations).
Traditional model assumes that all individuals have the
same detectability so that the sample species frequencies
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(X1>X27 ceey XS)
distribution:

P(X;=a;,i=1,2,...,5)

-0 G- (2)/C)

In this special case, the species detection rate for the ith
species is simply the true relative abundance p; = N;/N. Here
we consider a more general model which allows that individ-
uals’ detectabilities vary across species. We assume that the
detectability of any individual within the ith species is 8; > 0.
Under this general model, the species detection rate for the ith
species becomes ; = N;0;/ Z:Zl N0, = pi0;/ Zi:lpk’ 0y,
1=1,2,..., 8. That is, the detection probability for species i is
normalized product of species relative abundance (i.e., p;) and
individual detectability (i.e., #;). Intuitively, the number of in-
dividuals which have equal chance to be observed in the sam-
ple for species i is thus approximately N1;. But N; may not
be an integer, so we define the integer-valued variable Z; for
the ith species as the unknown number of individuals which
have equal chance to be observed in sample. Since Z; > 1 (oth-
erwise this species will have no chance to be included in sam-
ple and thus should be excluded in the estimating target) and
the sampling fraction is n/N, the vector Z = (Z,, Zs, ..., Zs)
can be modeled as a truncated multinomial distribution with

follow a generalized hypergeometric

(1a)

cell total N and cell probabilities (¢7,¢3,...,v%), where
Y= /P{z;z >1,i=1,2,...,5}, z = (21, 29,...,25), and
Zle z;i = N. For any given value of z = (z1, 22, ..., 25), the

sample species frequencies (X1, Xy, ..., Xg) follow a general-

ized hypergeometric distribution:

P(X1:$17Z:1,2,7S)

()6 G g

(1b)

If all N;’s are infinitely large and the sampling fraction is
relatively small (i.e., N >> n), then equation (1b) approaches
the following multinomial model

|
P(X,=xzi,i=1,2,....8) - —

I xT9 xrg
191 B
S -

(Lc)
This is a model for sampling with replacement with cell
probabilities (¢1,s,...,%s). Equation (1c) shows that if all
species are very abundant and only a small portion of the
community is sampled, then the inferences for the two types
of sampling schemes differ little.
Based on the general model (1b), the marginal dis-
tribution for each species frequency is a hypergeometric
distribution:

== (2) (22) /()

The expected value of the frequency counts using (1d) is

-0 £ () (22)/6)

l @)

!

(1d)
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In particular, we have

- £()/0)

= (1) (21) /)

E(f»—iSZ; <2> (?2)/@)

> n(n—1)z(z;—1) N—z; N
:;2(N—zj—n+1)(1v—zj—n+2) ( n >/(n>

The Cauchy—Schwarz inequality leads to

zs: nz; N—Zi N
_ﬂNsz;fnJrl n n

A3 =) (V2) /0

with equality achieved when all z;’s are equal. The left side
in the above inequality is {E(f1)}?, and the first sum on the
right side is E(f;). We need a little algebra for the second
sum. Rewrite

( nz; )2 _n n(n—1)z;(z — 1)
N—zi—n+1) n—-1\(N-z—-n+1)?
TZZZQ

(N -2 —n+1)%

+

Thus the second sum becomes

S

S (=) (M07) J0) = e

i=

S
n nz; N — z; N
+Z{Nzin+l}szn+l< n )/(n)

The contribution of those species with large z; to the last
term in the above equation is almost negligible. For those
species with z; being much less than N, we have

n _ n/N . n/N ¢
N—z-n+1 (N-z-n+1)/N 1-(n/N) 1-gq

We then obtain the following approximate inequality

E()Y < (E(h) {n2E(fz) + 13qE<f1>} :

n—1
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which is equivalent to
E(f7)

E(fU) 2 n q .
2E(f2)+mE(f1)

n—1

(3)

Replacing the expected value by the observed frequencies,
we thus obtain the following lower bound for the true species
richness. We call it S\\'orl7 where the subscript “wor” refers to
“without replacement.”

fi fi

gworl = =
2f2+ﬁf1 wfy+rfi’

D +

(4)

n

n—1

where w =n/(n —1) and r = ¢/(1 — q).

When only a small portion of individuals are taken from
the entire universe of N individuals in the community, so that
the sample fraction ¢ approaches zero, our lower bound ap-
proaches the Chaol estimator:

(n—-1) ff
no2fy

On the other hand, when ¢ approaches 1, ¢/(1—¢q) ap-
proaches infinity and our lower bound reduces to the number
of observed species, which equals the true parameter.

An approximate variance formula for S“m.l can be obtained
by using an asymptotic approach based on the hypergeometric
distribution. The resulting variance estimator is:

5 F2 2f ’ i '
A

where fo = f2/(2wf, + rf1) denotes the estimator of the un-
detected species in the sample. The performance of this vari-
ance estimator is investigated in Section 5. When Sort is used
as an estimator of species richness, a confidence interval of S
can thus be constructed by a log-transformation so that the
lower bound is always greater than the number of observed
species (Chao, 1987).

2.2 Sampling by Quadrats (Replicated Incidence Data)

In many biodiversity studies, the sampling unit is not an in-
dividual, but a trap, net, quadrat, plot, or timed survey. It is
these sampling units, and not the individual organisms, that
are actually sampled randomly and independently. Count-
ing the exact number of individuals for each species appear-
ing within each sampling unit may often become impossible
for micro-organisms, invertebrates or plants. In most cases,
only their incidence (presence or absence) can be recorded.
In this subsection, we discuss the estimation based on a set
of replicated samples in which the incidence of each species
is recorded in each sample unit instead of its abundance. Al-
though we use the term “quadrat” in the example given be-
low, the sampling unit “quadrat” may as well refer to a trap,
net, team, observer, occasion, transect line or fixed period of
time in other sampling protocols. Suppose the study area is
divided into T quadrats with roughly equal area (7T is known)
indexed 1, 2,..., T.

Let M; (the true incidence-based species frequency) be the
unknown number of occupied quadrats by the ith species, i =
1,2,...,5 We assume that in each quadrat, the “conditional”
probability of detecting species i in any selected quadrat

gChaol =D+ (5)

Vé,I‘( \\'orl) = Jo +
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(given species i is present) is 0 < a; < 1. That is, any selected
quadrat need not be completely censused. Our model can thus
be applied to not only surveys of sessile plants but also sur-
veys of mobile animals. The model assumes that out of these
M; quadrats, species i can only be detected in U; quadrats
(U; is also unknown and M; > U; > 1). We restrict to the
case U; > 1. (For any species with U; = 0, there is no chance
to detect this species in any sample, so it should be excluded
in the estimating target.) Here, U; is a truncated binomial dis-
tribution with probability P(U; = k) = [M;!/{k!(M; — k)!}]
P (l—a)M* /{1 —(1—o)M} for k=1, 2,...,M,. In the
other T' — U; quadrats, either species 7 is absent or it is present
but cannot be detected. In our simulation (in Section 5.2), we
considered three types of distributions for species detection
probability «; (constant, uniform distribution and beta distri-
butions). Because M; may vary with species, our model holds
even if species are spatially aggregated in the study area. See
Sections 5.2 and 6 for discussion.

Assume a sample of ¢t quadrats is randomly selected without
replacement. The presence or absence of any species for each
of these ¢ quadrats is recorded to form a species-by-quadrat
incidence matrix. Let Y; (sample incidence-based species fre-
quency) be the number of quadrats in which the ith species
is observed in the sample, i = 1, 2,...,S5. Then the sample
frequencies (Y1,Y5s,...,Ys) given U; = u; follow a product-
hypergeometric distribution:

P(Y,=y,i=1,2,...,5)
_H{(Z> (5—_;;)/(3)} 1 <u; <M.
) (7)

That is, (Y7,Y5,...,Ys)are independent but nonidentically
distributed random variables and each follows a hypergeomet-
ric distribution.

Denote the sample incidence-based frequency counts by
(Q1,Q2,...,Q:), where Qy is the number of species that are
detected in exactly k quadrats in the data, £k = 1, 2,... %
Hence, Q; represents the number of “unique” species (those
that are detected in only one quadrat) and @ represents the
number of “duplicate” species (those that are detected in only
two quadrats). It follows from the distribution of ¥’s that

S S
e =3ro=n=3.(3) (7)/(0)
17 i (8)

The sampling fraction here is defined as ¢ = ¢ /T. The
expectation (8) has a similar form to the one presented in
(2). Let D denote the number of distinct species that are ob-
served in at least one quadrat. Parallel derivations to those
in Section 2.1 can be made with n being replaced by ¢, and
the counts (fi, f,...,f,) being replaced by (Q1,Q2,...,Q:),
yielding a lower bound (called S'WO,.Q) of the true species
richness.

2
Swor2:D+ 7 Ql q .
" 90,4+ 2
1 Q2+ 17(]@1

(9)
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When ¢ — 0, our lower bound approaches the Chao2 esti-
mator which is the lower bound for sampling with replacement
(Chao, 1989):

(t—-1) @

t2Qy
When ¢ — 1, our lower bound converges to the true species
richness. A variance estimator and confidence interval can
be similarly obtained as in the individual-based case; see
equation (6).

S’Chau? =D+ (10)

3. Shared Species Richness
3.1 Sampling by Individuals (Abundance Data)

Below, we mainly discuss the case of two communities. As-
sume that there are S; species in Community I and there are
Sy species in Community II. Let the number of shared species
be Si». Let Nj; (true species abundance) be the unknown num-
ber of individuals of the ith species in Community j, ¢ = 1,
2,...,5;, 7= 1, 2. The total population size in each commu-
nity is N; = Zil N;;. We assume the two total sizes N; and
N, to be known.

Two random samples of individuals (sample I with size m
and sample II with size n,) are independently taken without
replacement from Communities I and II, respectively. Assume
that Dy shared species are observed. The observed frequen-
cies in the two communities are given by (X1, Xo1,..., Xg,1)
and (X129, X9, ..., Xg,,2), respectively. Without loss of gen-
erality, we assume that the first S)» species of the two sets
are the shared species. In each community, the sample species
frequencies then follow a generalized hypergeometric distribu-
tion as in (1b). Our model allows that individuals’ detectabil-
ities vary across species in each community.

Given any two non-negative integers j and k, let f;; de-
note the number of “shared” species that are represented by
7 individuals in sample I and k individuals in sample II. In
particular, fi; denotes the number of shared species that are
singletons in both samples, and fj) denotes the number of
shared species that are undetected in both samples. Also, f;.
is defined as the number of shared species that are repre-
sented by j individuals in sample I and present (by at least
one individual) in sample II, and an analogous definition is
used for f,,. Here, f,( is the number of shared species that
are observed in sample I but not observed in sample II, and
a similar interpretation holds for fy.. Following a similar ap-
proach as in Section 2.1 and assuming the independence of
the two samples, we obtain

E(fjr) =

()@
p— ] ny — j k ng — k ny Uy ’
(11)
where z; denotes the unknown number of individuals which
have equal chance to be observed for the ith species in Com-
munity j. Since Sy = Do+ E(f10) + E(for) + E(foo) and
only D;y is observable, our goal is to derive a lower bound
for each of the other three terms. Define the two sampling
fractions ¢ and ¢ as ¢; =n;/N;, j = 1, 2. For E(f},) and
E(fo.), similar lower bounds as in (4) can be obtained, and
these two lower bounds are shown in the second and third
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terms in the right hand side of (12). Therefore, we only need
to derive a lower bound for E( fy). Using the moment formula
E(fjx) in (11) and the Cauchy-Schwarz inequality, we derive
a lower bound in Web Appendix A for E(fy). The resulting
lower bound for the shared species richness 5}, is given below.
We call this lower bound 5‘12_“0,»1.

4 fi? [
S worl — D;: + +
12wt P 2w for +1ifir | 2wafia+rafi
n fu?
dwyws fag + 2wirs for + 2riws fio + ryrafin’
(12)
where w; =n;/(n; —1), and r; = ¢q; /(1 —¢;), j =1, 2. If ¢,
¢ — 0, then
4 fi® fo fu®
S wor Dy + 5 13
f2worl 7 12 2wifor  2wafro  dwiwafo (13)

which is identical to the lower bound for sampling with re-
placement (Pan et al., 2009). If ¢, ¢ — 1, then 19 wor1 COT-
rectly approaches the true parameter. The above approach
represents a unified framework of constructing a lower bound
for shared species richness. The extension to the case of more
than two communities is shown in Web Appendix B. Instead
of deriving an asymptotic variance, we adopt a bootstrap ap-
proach to obtain a variance estimator for Slz‘worl (details are
given in Web Appendix C).

3.2 Sampling by Quadrats (Replicated Incidence Data)

We again use the term “quadrat” as in Section 2.2. Suppose
the two study areas are divided into T} and T, quadrats with
roughly equal size, respectively, where both T;’s are known.
We randomly select # quadrats from the first area and ¢,
quadrats from the second area. As described in Section 2.2,
our model does not require that all selected quadrats be to-
tally sampled. The incidence of any species for each sampled
quadrat is recorded to form a species-by-quadrat incidence
matrix for each community. Let Q;, denote the number of
shared species that are detected in j quadrats in Community I
and k quadrats in Community II. By applying a method anal-
ogous to that used in Section 3.1, it can be shown that the
lower bound Slz_wmg for the number of shared species based on
incidence counts has the same form as in (12) except that the
samples sizes n; and n, should be, respectively, replaced by t;
and b, the sampling fractions replaced by ¢, /T; and ¢5/T5, and
the abundance counts replaced by the incidence-based counts
Q;1. Extension to the more general case and the associated
inference procedures are parallel to those in Section 3.1.

4. Applications to Real Data

We applied the proposed bounds to infer species richness and
shared species richness for some real data sets. Here we only
present species richness estimation. Shared species richness
estimation is provided in Web Appendix D (data in Web
Table 1 and estimates in Web Table 2). We considered a small
benthic infaunal data set which was originally used in Heltshe
and Forrester (1983) and later discussed by Mingoti and
Meeden (1992) and Haas et al. (2006). The data consist of
species frequencies (number of individuals) in 10 quadrats
taken from a subtidal marsh creek in Rhode Island in 1978.
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Table 1
Species frequency in 10 benthic infaunal quadrats taken from a
subtidal marsh creek in Rhode Island (Heltshe and Forrester,
1983). There were 361 individuals of 14 species. The last
column shows the total frequency for each species observed in
the data

Quadrat number

Row

12 3 456 7 89 10 total

13 21 14 5 22 13 4 4 27 123
2 2 4 41 1 1 1 6 22

Species list

Streblospio benedicti
Nereis succines

Polydora ligni 1 1 2
Scoloplos robustus 1 1 2 6 1 2 13
Eteone heteropoda 1 2 1 1 5
Heteromastus filiformis 1 1 2 1 1 1 5 12
Capitella capitata 1 1
Scolecolepides viridis 2 2
Hypaniola grayi 1 1
Branis clavata 1 1
Macoma balthica 3 2 5
Ampelisca abdita 5 1 2 3 11
Neopanope texana 1 1

Tubifocodies sp. 8 36 14 19 3 22 6 8 5 41 162

Table 2
The influence of hypothetical quadrat number (T) on four
species richness estimates based on replicated incidence data
in 10 quadrats shown in Table 1. The hypothetical sizes are
assumed so that the sampling fraction is decreased from 0.5 to
0.001
SA'Wl, S'Wg: the first- and second-order generalized jackknife by
Haas et al. (2006);
S'MM : estimates taken from Table 2 of Mingoti and
Meeden (1992);
Soor: Proposed in equation (9); s.e. is discussed in

Section 2.2

Hypothetical Hypothetical

sampling quadrat

fraction ¢ number T Sml SWQ Sonr Suoro (s.e.)
0.50 20 14.6 16.7 17.3 16.7 (2.5)
0.33 30 14.9 173 19.3 17.6 (3.7)
0.20 50 15.0 17.7 21.7 18.4 (3.8)
0.142 70 15.1 17.8 23.3 18.7 (4.7)
0.10 100 15.2 179 25.0 19.0 (5.3)
0.01 1000 15.3 182 36.1 19.6 (5.7)
0.001 10000 15.3 182 47.2 19.6 (6.7)

The species frequencies in each quadrat are reproduced in
Table 1. There were 361 individuals of 14 species.

Heltshe and Forrester (1983) obtained a species richness
estimate of 18.5 with an estimated s.e. of 4.05, but sampling
fraction was not considered in their method. In these data, we
have @ = 5 (there were five species that were found in only
one quadrat) and @, = 2 (there were two species that were
found in only two quadrats). Based on (10), the Chao2 esti-
mate is 19.6. To apply the estimator Sy in equation (9), we
need the number of quadrats (7) in the study area, but this

Table 3
The influence of hypothetic population size (N) on three
species richness estimates based on the abundance data (the

last column in Table 1). The hypothetical sizes are assumed so

that the sampling fraction is decreased from 0.5 to 0.001
SA'Wl, S'Wg: the first- and second-order generalized jackknife by

Haas and Stokes (1998);
Syor1 : proposed in equation (4); s.e. formula in
equation (6)

Hypothetical Hypothetical

sampling population

fraction ¢ size N S'uﬂ 5'“]2 Suorl (s.e.)
0.50 722 14.1 24.0 16.0 (2.2)
0.33 1094 14.1 25.8 16.7 (3.1)
0.20 1805 14.1 27.0 17.2 (3.8)
0.142 2542 14.1 27.4 17.4 (4.2)
0.10 3610 14.1 27.8 17.6 (4.5)
0.01 36100 14.2 28.5 18.0 (5.2)
0.001 361000 14.2 28.6 18.0 (5.3)

information was not provided in the data sources. Following
the approach of Mingoti and Meeden (1992), we considered
several hypothetical values of T such that the sampling frac-
tion is between 0.001 and 0.5. For each value of 7T in Table 2,
we compare the species richness estimates of four methods:
the first- and second-order generalized jackknife by Haas
et al. (2006, p. 136), the empirical Bayes estimate by Mingoti
and Meeden and the proposed estimator S'WO,.Q with an esti-
mated s.e. As indicated by Mingoti and Meeden, the empirical
Bayes estimate is increasing with 7' with a rate of log(T). The
first-order jackknife estimator differs little from the observed
species richness. The second-order jackknife and our proposed
estimator behave similarly and are slowly increasing with 7.
When the number of quadrats is increased from 20 to 10,000
so that sampling fraction is decreased from 0.5 to 0.001, our
proposed estimate is steadily increased from 16.7 (s.e. 2.5) to
19.6 (s.e. 6.7). Our estimates approach the Chao2 estimate
as T becomes large. Mingoti and Meeden (1992) in their em-
pirical Bayes approach assumed that the detection probabil-
ity of any species in a quadrat follows a beta distribution.
In our model formulation, the lower bound S“,MQ is valid for
all types of species detection probability (see Section 5.2 for
simulation).

In the above quadrat data analysis, only species pres-
ence/absence is considered while the species frequencies in
each quadrat are not used. An alternative approach is to pool
frequencies over quadrats to obtain species abundant data (as
shown in the last column of Table 1) and infer species richness
based on the method presented in Section 2.1. For the pooled
frequencies, we have fi = 4 (there were four singletons) and
detected and f; = 2 (there were two doubletons), and thus
the Chaol estimate given in equation (5) is 18.0. We need
the true population size N to obtain the lower bound Syort in
equation (4). We again considered several hypothetical values
of population size such that the sampling fraction is between
0.001 and 0.5. Table 3 shows how the two jackknife estimators
and the proposed estimator Sort vary with population size.
When the hypothetical population size is increased from 722
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Table 4
Comparison of four species richness estimates for quadrat incidence data generated from the 50 ha BCI incidence data (Hubbell
et al., 2005; 100 x 100 m quadrats). The true parameter is S = 299 and the total number of quadrats is T = 50 (Simulation
trials = 1000). Detection rate of each species in any selected quadrat follows a beta (4, 1) distribution with mean of 0.8

Schao2: see equation (10). Syi1, Suj2, Sworz: see Table 2

Sampling Sample Average of Average Average Sample Sample
fraction ¢ size observed species Estimator estimate bias s.e. RMSE
0.1 5 223.3 Schaos 245.3 —53.7% 11.1 54.8"
St 237.8 —61.2 7.9 61.7
S 237.9 —61.1 8.1 61.6
Sy (s.€.) 244.1 —54.9 10.6(8.1) 55.9
0.3 15 260.8 Shaos 289.4 —9.6° 14.3 17.2°
S 263.8 —35.2 5.3 35.6
S 271.2 —27.8 6.6 28.6
Sy (s.€.) 281.2 —-17.8 9.7(8.3) 20.2
0.5 25 276.5 SChao2 307.1 8.1 14.1 16.3
S 277.8 —21.2 4.1 21.6
S 285.9 ~13.1 5.2 14.1
Sy (s.€.) 291.6 —7.4% 6.5(5.9) 9.9
0.7 35 286.6 SChao? 317.7 18.7 13.7 23.1
S 287.1 -11.9 3.2 12.3
S 294.0 ~5.0 3.9 6.4
Syora (s-e.) 295.6 —3.4 4.1(3.7) 5.3
0.9 45 294.2 SChaon 323.3 24.3 11.4 26.9
St 294.4 —4.6 2.1 5.1
S 298.1 -0.9 2.3 2.5"
Sorz (s.€.) 297.2 -1.8 2.2(1.8) 2.9

aDenotes the smallest absolute bias; "Denotes the smallest RMSE.

to 361,000 so that sampling fraction is decreased from 0.5 to
0.001, our proposed estimate is steadily increased from 16.0
(s.e. 2.2) to 18.0 (s.e. 5.3). The first-order jackknife estimates
implies that there were no undetected species. The second-
order jackknife estimates are relatively much higher than the
corresponding estimates obtained from the quadrat analyses.
Our estimates based on the two types of data are generally
consistent.

5. Testing by Simulations
5.1 Comparison of Estimators

The performance of the proposed lower bounds was investi-
gated by examining their behaviors when tested with data sets
generated from a number of real biodiversity surveys or cen-
suses. We treated the data from each of several large surveys
and censuses as the “true community,” so that the number
of observed species in each survey is regarded as the known
“true species richness.” We generated subsamples from it and
compared the proposed lower bound with the known species
richness of the surveys and censuses. All these cases repre-
sent highly heterogeneous communities in which the species
abundance-based or incidence-based frequencies vary greatly
among species. Due to space limit, here we only present
species richness estimation under quadrat sampling. The test-
ing for abundance models and for shared species richness is
described respectively in Web Appendix E and Appendix F.

A test data set is given in Web Table 3 and simulation results
are shown in Web Tables 4—7.

Here we analyzed quadrats of the size 100 x 100 m from
the 50 ha (1000 x 500 m) Barro Colorado Island (BCI)
plot, Panama, censused in 1985 (Hubbell, Condit, and Foster,
2005). The BCI census set included 238,018 individual trees
and shrubs (> 1 cm in diameter at breast height) represent-
ing 299 species in 50 quadrats. Our simulation was based
on the model in Section 2.2. In each selected quadrat, the
detection probability of any species follows a beta (4, 1)
distribution with mean detection probability 0.8; see Sec-
tion 5.2 for additional types of detection probabilities. Only
species presence—absence data in each quadrat were used for
analyses.

We considered nine sampling fractions from 10% to 90%
in an increment of 10%, but we only report five cases (10%,
30%, 50%, 70% and 90%) in Table 4. All subsampling was
done by selecting quadrats without replacement from a set of
50 quadrats. For example, in the case of ¢ = 10%, we randomly
selected without replacement 5 quadrats (50x10% = 5) from
the whole set of 50 quadrats. For each fixed sampling fraction,
1000 simulated sets of sample with the same number of
quadrats were generated. Then for each simulated data set, we
recorded the number of observed species and calculated the
following four estimators: the Chao2 lower bound, the two
jackknife estimators, and the lower bound S’W(,rz along with its
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Table 5
The effects of individual detectability on the proposed estimator Sort for abundance data generated from the butterfly
community given in Web Table 3. The true parameter is S = 620. The total size N = 9031 individuals. Simulation trials =
1000. Beta (a, B): beta distribution with parameters o and 3, mean = a/(a+3); U(a, b): uniform distribution between a and b,
mean = (a+b)/2

Sampling Sample Mean individual Individual detectability Average observed Average
fraction ¢ size detectability distribution species estimate S'WU,.l
0.2 1806 1 constant = 1 414.8 518.0
0.8 constant = 0.8 396.5 509.2
Beta (4, 1) 394.0 509.0
U(0.7, 0.9) 395.6 508.9
0.6 constant = 0.6 372.0 499.0
Beta (3, 2) 365.2 496.3
U(0.4, 0.8) 369.1 496.5
0.5 4515 1 constant = 1 534.1 597.1
0.8 constant = 0.8 522.1 598.7
Beta (4, 1) 520.4 603.4
U(0.7, 0.9) 521.9 599.4
0.6 constant = 0.6 506.4 583.5
Beta (3, 2) 501.3 581.7
U(0.4, 0.8) 504.8 582.6
0.9 8127 1 constant = 1 607.6 619.3
0.8 constant = 0.8 599.9 613.2
Beta (4, 1) 598.7 612.2
U(0.7, 0.9) 599.9 613.3
0.6 constant = 0.6 589.7 604.9
Beta (3, 2) 586.5 602.2
U(0.4, 0.8) 589.0 604.4

approximate s.e. based on an asymptotic formula. The sample
standard error and sample root mean squared error (RMSE)
based on the 1000 simulation samples are provided in the last
two columns.

Based on Table 4 and other simulation results in Web
Tables 4—7, we summarize our findings as follows: the tra-
ditional approach of using the number of observed species or
shared species in the samples (shown in the third column in all
tables) as an estimator of the true species richness is clearly
not appropriate. It exhibits large negative bias, as would be
expected and has been shown in various studies before (e.g.,
Colwell and Coddington, 1994).

The first-order jackknife estimator S'uﬂ is severely nega-
tively biased in the cases of low sampling fractions. The Chao2
estimator is monotonically increasing with sampling fraction,
but they overestimate the true species richness when sam-
pling fraction is >30%. Although it has the smallest RMSE for
q = 10% and 30%, it does not converge to the true species
richness as the sampling fraction ¢ approaches 1. The second-
order jackknife performs reasonably in Table 4 when the study
area is divided as 50 quadrats, but it gives inconsistent es-
timates with severe positive biases when the study area is
divided as 1250 quadrats (Web Table 5). Each of the other
three estimators generally produces similar results for the two
quadrat sizes.

As implied by theory, our proposed lower bounds in all
cases are less than the true species richness. In all cases we
examined, the bound is stably and monotonically increasing
as ¢ is increased, and it converges correctly to the true species
richness when g approaches one. The bias, standard error and
RMSE of the proposed bounds all show the expected decreas-

ing pattern when the sampling fraction is increased. As the
sampling fraction exceeds 30%, the lower bound S'wo,x_) gen-
erally performs best among the four candidate estimators in
terms of both bias and RMSE. Thus it can be used as species-
richness estimator if the sampling fraction is over 30% and the
relative biases in nearly all cases are within 10%. The magni-
tude of bias typically depends on the sampling fraction as well
as on the average and heterogeneity of the species frequency
distributions.

Comparing our estimated standard error with the sample
standard error (both are shown in the second last column of
Table 4 and Web Tables 4—7), we find that the two values
for most cases are very close. This shows that the estimated
standard errors using the asymptotic method (for species rich-
ness) and the bootstrap method (for shared species richness
in Web Tables 6—7) are generally satisfactory even if they are
slightly negatively biased.

5.2. The Effects of Detection Rates on Estimators

Traditional model for abundance data assumes that individ-
uals’ detectabilities are homogeneous among species. This as-
sumption is relaxed in our model and we have theoretically
justified in Section 2.1 the validity of our method when indi-
vidual detectabilities vary from species to species. To numer-
ically investigate the effects of heterogeneous detectability on
our bounds, we conducted simulations by generating subsam-
ples from the data of a Malayan butterfly survey with 620
species, 9031 individuals (Fisher, Corbet, and Williams, 1943;
data are given in Web Table 3). We considered the following
four cases. (1) All individuals have a constant detectability
of unity. (2) All individuals have a constant detectability of



920

Biometrics, September 2012

Table 6
The effects of species detection rates on the proposed estimator Sor2 for replicated incidence data generated from 50 ha
incidence BCI census. The true parameter is S = 299 and the total number of quadrats is T = 50. Simulation trials = 1000.
Beta (a, B) and U(a, b): see Table 5

Sampling Sample Mean species Species detection Average Average estimate
fraction q size detection rate rate distribution observed species gworQ
0.2 10 1 constant = 1 255.4 276.7
0.8 constant = 0.8 249.4 271.6
Beta (4, 1) 247.8 270.0
U(0.7, 0.9) 249.0 270.8
0.6 constant = 0.6 240.4 262.7
Beta (3, 2) 235.3 259.5
U (0.4, 0.8) 239.4 261.6
0.5 25 1 constant = 1 281.5 294.5
0.8 constant = 0.8 277.3 292.3
Beta (4, 1) 276.5 291.6
U(0.7, 0.9) 277.4 292.3
0.6 constant = 0.6 271.3 288.6
Beta (3, 2) 268.7 285.9
U(0.4, 0.8) 270.8 288.3
0.9 45 1 constant = 1 296.5 298.8
0.8 constant = 0.8 295.1 298.1
Beta (4, 1) 294.2 297.2
U(0.7, 0.9) 295.0 298.0
0.6 constant = 0.6 291.6 295.2
Beta (3, 2) 289.2 292.8
U(0.4, 0.8) 291.0 294.6

0.8 (or 0.6). (3) The detectability of any individual within a
species is a parameter randomly chosen from a beta distribu-
tion with mean detectability of 0.8 (or 0.6); (4) The detectabil-
ity of any individual within a species is a parameter randomly
chosen from a uniform distribution with mean detectability of
0.8 (or 0.6). We show part of the numerical results in Table 5
(full table in Web Table 8). Other test data sets generally
yield consistent results. The results show that when mean
detectabiliy is 0.8 or 0.6, the estimator Srort unavoidably ex-
hibits larger bias than that based on data with detectability
of unity because the latter contains more data information.
However, when mean detectability is fixed so that the data
for the three cases (2), (3), and (4) are comparable, the esti-
mates for the three cases yield very close estimates. In each
of (2), (3) and (4) cases, as expected, estimates are mono-
tonically increasing to the true value as sampling fraction is
increased to one, though the convergence rate is slower. These
results numerically confirm that our method is valid for indi-
vidual detectabilities that vary across species. Also, our ap-
proach is independent of the distribution type of individuals’
detectabilities.

For incidence data, our sampling model allows that the
conditional probability of detecting any species in a selected
quadrat may be less than 1 given its presence. In Table 6
(details are given in Web Table 9), we show simulation results
based on generated data from BCI census for the four cases of
species detection rates mentioned above. Similar conclusions
as in the abundance data are obtained.

6. Concluding Remarks and Discussion

When individuals or sampling units are sampled without
replacement from target communities, no universal lower

bounds for species richness and shared species richness ex-
isted before. Based on abundance and replicated incidence
data, we developed in this paper simple and useful species
richness lower bounds for single communities, when the pop-
ulation size is known. We also derived similar lower bounds for
shared species richness. Simulations showed that if we allow
the relative bias to be within 10%, all proposed lower bounds
can be used as point estimators when the sampling fraction in
each community is higher than 30%. The bounds and estima-
tors discussed in this paper will be featured in the Program
SPADE (Species Prediction And Diversity Estimation, Chao
and Shen, 2010) following publication of this paper.

Our proposed lower bounds are derived from very general
sampling models. For abundance data, it is assumed that
species detectation rate is proportional to the product of
species abundance and individual detectability of that species.
Here individuals’ detectabilities may vary from species to
species. For incidence data based on quadrat sampling, species
detection probability in any selected quadrat given its pres-
ence may be less than 1 (i.e., each selected quadrat need not
be completely surveyed). The number of occupied quadrats
for any species is allowed to vary with species, implying that
even species are spatially aggregated or clustered, our method
is still valid. Since the bounds tend to the Chaol and Chao2
estimators when sampling fraction is small, our results also
imply that both the Chaol and Chao2 estimators are valid
under similar general models.

A critical assumption in all of our proposed models is
that the sampling fraction should be known. Although this
assumption is usually satisfied under quadrat sampling or sur-
veys based on areas, sampling fraction information is gen-
erally not available for animal abundance surveys because
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population size is often unknown. In such a case, we suggest
that a sequence of estimates for several hypothetical values of
sampling fraction should be examined as in the data analysis
in Section 4. Haas and Stokes (1998) mentioned some other
interesting applications in which population size is known.
These include the following estimation issues based on a non-
repeated sample. (1) The estimation of the number of “differ-
ent” people who have entered a contest. Some people might
have entered multiple times. Here the total number of con-
test entries is known (Sudman, 1976). (2) The estimation of
total number of “distinct” units in a combined list which is
formed by merging several possibly overlapped lists. Here the
total number of units over all lists is known. (3) The estima-
tion of the number of distinct values of an attribute in large
database management system. The total number of records
in the database is known. Thus, our methods can be applied
to the above issues.

Chao et al. (2009) developed a nonparametric method for
estimating the minimum amount of sampling effort (addi-
tional individuals or quadrats/samples) required to detect any
arbitrary proportion (including 100%) of the estimated lower
bound in a single community. Their models, however, were
based on sampling “with” replacement. The extension of their
method to sampling without replacement is a worthwhile re-
search topic.

7. Supplementary Materials

Web Appendices and Web Tables referenced in Sections 3, 4,
and 5 are available with this paper at the Biometrics website
on Wiley Online Library.
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